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Introduction

The Cray 2 and Cray Y-MP are in many respects very similar computer sys-
tems, particularly when compared with other computer systems currently avail-
able. This similarity extends to the area of floating point arithmetic hardware
implementation. The hardware implementations differ only very slightly, but this
difference is sufficient to cause certain algorithms to exhibit significant increases in
error when run on the Cray Y-MP. This paper describes the differences between
the two arithmetic implementations, details the error behavior differences be-
tween the two arithmetics, and presents a model of how the floating point error be-
havior influences the error behavior of the solution of large positive definite

systems by Cholesky factorization.

An interesting example was produced by a finite element model of the
aeroelastic behavior of the National Aerospace Plane (NASP). Details of the code
may be found in [1]. The simulation requires the solution of a large sparse sym-
metric positive definite system of order 16146. The solution method is a variant
of Cholesky factorization followed by back substitution. The method is computa-
tionally efficient and very stable numerically for this class of matrices. However,
identical simulations run on the Cray 2 and Cray Y-MP produce different results.
The solution produced by the Cray Y-MP has two fewer correct decimal digits in
the solution than the solution produced by the Cray 2. Output of identical runs on
different computers collected by O. Storaasli is presented in the following table.
Max Displacement is the largest component of the solution. Norm of Residual is the
square root of the sum of the squares of the components of the residual vector us-

ing the computed solution. The results are listed in order of increasing residual.



Table 1

Computer Max Displacement Norm of Residual
128-bit Cray 2 0.447440341 0.48E-18
64-bit Convex 220 0.447440339 0.24E-6
64-bit IRIS 0.447440339 0.34E-6
64-bit IBM 3090 0.447440344 0.12E-5
64-bit Cray 2 0.447440303 0.87E-5
64-bit Cray Y-MP 0.447436106 0.12E-3

The results show that the maximum displacement for most of the computer sys-
tems agree to eight decimal digits (rounded), the Cray 2 64 bit solution agrees to
seven decimal digits, and the Y-MP agrees to five decimal digits. Given the simi-
larity of the two Cray floating point arithmetic implementations, this result is un-
expected. Some background is necessary to provide the framework for a

discussion of the problem.

Floating Point Arithmetic Implementations

Floating point arithmetic implementations on current supercomputers vary
widely among architectures. Supercomputer floating point number formats are
nominally based on 64 bits. The various implementations may be described in
terms of the number of bits assigned to the fractional part of the number (mantissa)
and to the exponent, and the base (or radix) of the number system. The accuracy
of computations in a given floating point implementation will be affected by man-
tissa length and the "cleanliness" of the arithmetic. Clean floating point arithmetic
is defined by the property that all floating point operations performed in the arith-
metic are accurate within one-half a unit in the last place [2][3]. IEEE 754 (along
with IEEE 854) compliant floating point arithmetic requires the implementation in
the arithmetic functional units of three extra low order digits, or in a binary ma-
chine, three extra bits. The first extra digit, the guard digit, prevents errors from be-
ing introduced in the result by the final left shift of the mantissa
(postnormalization) in multiplication and subtraction. The second and third extra
digits, the round digit and sticky digits, are required to implement correct symmet-
ric rounding. The sticky digit may be implemented as a single extra bit regardless
of base, hence is often referred to as a sticky bit. Common floating point arithmetic
implementation deficiencies include imprecise or nonexistent rounding, lack of

guard and/or round digits, and lack of a sticky bit. Combinations of these features



can lead to errors of several or more bits for various floating point operations. For
example, lack of a guard digit in subtraction can result in answers which are incor-

rect (most often) in the second to the last place. (It can be worse.)

Both the Cray-2 and the Cray Y-MP have a binary radix, 48 bits of precision
in the mantissa, and lack a guard digit in subtraction. Neither machine performs
correct symmetric rounding in multiplication. Addition and subtraction in the Y-
MP is chopped, while in the Cray 2 it is prerounded. Prerounding eliminates the
bias in error caused by chopping, but has significantly worse total error than true

symmetric rounding. The unit roundoff for both machines is 2-48, or about 10-15.

Errors in the Solution of Linear Systems

Suppose we wish to solve an nxn positive definite system Ax=b. The error
in the solution X is affected by two factors; the accuracy of the computer arithmetic
used to solve the system, and the nearness of the linear system's matrix A to a sin-
gular matrix. The latter can be characterized by the condition number K of the ma-
trix. K varies from a value of one (in the matrix 2-norm) for the best behaved
matrices (orthogonal matrices), to infinity (in all matrix norms) for singular matri-

ces.

Suppose the solution X of the nxnsystem Ax=b, A nonsingular, is desired. Gaussian

elimination followed by back substitution produces a computed approximation

-

x
to X. An expression for the relative error eis

Izl
Define the unit roundoff u by Bt where B is the base of the floating point arithmetic,
and t is the number of mantissa bits. From classical error analysis, the relative er-
ror eresulting from the solution of a linear system by Gaussian elimination fol-
lowed by back substitution can be as large as the product of the condition number
and u:

(1)
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The residual r = b - A is often used as measure of the accuracy of solution. The
f
size of the residual can be related to the size of the of A and :

5
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This equation says that Gaussian elimination produces an for which the re-
sidual (though not necessarily the relative error) is small.

The IMSL scientific subroutine LFCQS was used to obtain an estimate of the
condition number of greater than 101! for the matrix from the NASP simulation,
from which equation (1) suggests that there could be as few as four correct decimal
digits in a result produced by the Cray systems. "Classical" error analysis usually
leads to overly pessimistic bounds on the error in the solution. This is particularly
true of Cholesky factorization. In practice, obtained accuracy is often much better
than predicted[4][5][6], and for Cholesky factorization, tighter error bounds have
been obtained[7]. The tighter error bounds, like the classical error bounds, have a
multiplicative dependence on u. Thus, these error analyses fail to predict the dif-

ference in the accuracy obtained on the two Crays, which have the same u.

The Effect of Y-MP Floating Point Arithmetic on the Accuracy of the Computed
Cholesky Factorization

Although the Cray 2 and Cray Y-MP share floating point storage formats,
their respective floating point arithmetic implementations differ. In particular, the
methods for computing floating point additions and subtractions are slightly dif-
ferent. It can be shown (see Appendix A) that the maximum error incurred in Cray
2 floating point subtraction is (usually) less than 1 in the last place. However, the
Cray Y-MP floating point subtraction (usually) has errors less than +1 in the sec-
ond to the last (47th) bit, or more than twice as large as the error of the Cray 2. This
has important ramifications for the error behavior encountered when certain nu-
merical algorithms on the Cray Y-MP, including the Cholesky factorization of

symmetric positive definite matrices, are scaled up to larger problem sizes.

Cholesky factorization of a symmetric positive definite matrix A produces

a lower triangular G with positive diagonal entries such that A = GGT. (See, for

instance, [8].) The original matrix A often has a positive main diagonal and mostly



negative off-diagonal entries. During the Cholesky factorization process the diag-
onal entries of G are formed using subtraction operations, while the off diagonal
entries of G are formed from mostly addition operations. The Cray Y-MP can pro-
duce results from subtract magnitude floating point operations that are as much as
one in the second to the last place too large. The important point is that the error,
if there is one, always makes the result a little larger. The Cray 2 subtract magni-
tude floating point operation, and clean arithmetic implementations such as the
VAX, Convex, and IEEE 754, do not. As was pointed out by W. Kahan [9], making
the main diagonal of the Cholesky factor G a little larger effectively changes the

original matrix A, and induces a systematic error in the solution x of Ax=b.

It can be shown (see Appendix B) that with Cray Y-MP style floating point
arithmetic, the difference in relative error Ae between solution components of model
pde problems computed with Cray-2 style floating point and Y-MP style floating
point can be as much as en?, where n s the size of the system, and € is a small pos-
itive constant about the size of the unit roundoff u. This error is in addition to the
error normally incurred in the factorization procedure. The error incurred in the
solution of these model problems attributable to the factorization is bounded (usu-
ally quite loosely) by equation (1), and can be expected to scale O(n) as the order n
of the matrix associated with the problem is increased. The scaling behavior O(n)
of the error in the solution of the model problem as the problem size is increased
is common to most computer systems; in particular, the Cray 2 exhibits this behav-
ior. Numerical experiments conducted by N. McCown at NAS [10] found that the
observed difference in the relative error AE between the Cray 2 and the Cray Y-MP in
the solution of large banded positive definite matrix equations by Cholesky factor-

ization fit a model equation of the form

AE =cnY

where ¢ Ju, and 0.8 < y<1.75. This compares to the analytic prediction (found in
Appendix B) of y<2 for the solution of the model problem using Cholesky factor-
ization and Y-MP floating point arithmetic, and the prediction of y<1 for solutions
obtained with most other floating point arithmetics.

The analytical model Ae < en? with €=2-48 and n=16146 predicts a difference
in relative error between the Cray 2 and Cray Y-MP of about 10-%, which compares

with the observed amount of



9.75E-6 = F((0.447440472 - 0.447436106),0.447440472)
for the NASP simulation.

The error imposed on Cholesky factorization by Y-MP floating point arithmetic in-
creases significantly faster with increasing problem size than that produced by
other floating point arithmetics. Since Cholesky is a highly efficient and well be-
haved numerical method for the solution of large positive definite systems, this is

apparently an unsatisfactory situation.

Iterative Refinement
A technique for improving the accuracy of the approximate solution ob-

-

X
tained from a factorization such as Cholesky is iterative refinement. The incentive

for using this algorithm lies in its relatively low computational cost compared with
the computation of the original Cholesky factors. Suppose Ax=b has been solved

by a factorization method and an approximate solution has been produced. Com-

X
pute:

r=b-A (compute residual)
E.
solveGGTe=rfore (using the previously computed factors)

- +e

PRI

Iterative refinement of an nxn system requires O(n2) flops, while the Cholesky fac-
torization requires O(n3) flops. Thus, for large systems the computation of the fac-

tors dominates the total floating point operation count.

Traditionally, the computation of the residual has been performed in double pre-
cision, in which case the procedure is denoted mixed precision iterative refinement
(MPIR). This stems from the observation that usually the factorization technique

produces an for which the residual is small, and thus susceptible to cancellation

-

i
effects. Double precision computations on Cray computer systems are performed

in software, and due to the nature of Cray floating point arithmetic, are performed
at least three times slower [11] than they could be if implemented using clean hard-

ware floating point arithmetic. Thus the use of MPIR to improve accuracy has not



been as cost effective on Cray systems as on other systems with clean floating point

arithmetic.

Recent work [12] suggests that a modification to the traditional MPIR approach
can efficiently produce significant improvements in the accuracy of the approxi-

mate solution when the Cholesky factors are not as accurately computed. Nor-

-

X
mally, the Cholesky algorithm produces a factorization that from the standpoint of

classical error analysis is reasonably well behaved. The Y-MP produces a factor-
ization that is not as accurate. In this case, fixed precision iterative refinement (FPIR)
can be applied to the Y-MP factored matrix to improve the accuracy of the comput-
ed solution to nearly the maximum obtainable using clean floating point with the
same mantissa size. FPIR is identical to MPIR, except that the residual is computed
in single precision. FPIR was applied to the 16146 equation PVSOLVE problem
and run on the NAS Cray 2 and Cray Y-MP. The results are summarized below.
The 128-bit Cray 2 result (without refinement) and the 64 bit Y-MP MPIR result are

presented for comparison purposes.

Table 2
Computer Max Displacement Norm of Residual
128-bit Cray 2 0.447440341 0.48E-18
64-bit Cray 2 0.447440303 0.87E-5
FPIR once 0.447440349 0.39E-5
FPIR twice 0.447440344 0.40E-5
64-bit Cray Y-MP 0.447436106 0.13E-3
FPIR once 0.447440270 0.38E-5
FPIR twice 0.447440275 0.35E-5
MPIR once 0.447440341 0.58E-6

From Table 2 it is clear that one application of FPIR improves the Y-MP solution to
nearly the accuracy of the Cray 2 solution, and the Y-MP residual is smaller. Each
application of FPIR adds about 4% of the solver cpu time to the total cpu time.

FPIR does require increased memory requirements, however, as copies of both the
initial matrix and the factor are required in memory for efficient execution of FPIR.

One application of MPIR produces agreement with the Cray 2 128 bit result, at a



cost of about 40% more cpu time over just the single precision solver alone.

Conclusion

The Cray 2 and Cray Y-MP floating point arithmetic implementations, though
quite similar, have fundamental differences that cause observable differences in
the output of NAS user codes. The Cray Y-MP implementation of floating point
arithmetic has characteristics that cause significant degradation in the obtainable
accuracy of the solution of positive definite systems by Cholesky factorization.
This otherwise unsatisfactory situation is ameliorated by the existence of the com-
putationally inexpensive FPIR algorithm that should provide nearly full precision
results for linear systems solved using Y-MP arithmetic and Cholesky factoriza-

tion.
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Appendix A

The Subtract Magnitude Floating Point Operation on Cray 2 and Cray Y-MP

The following is a detailed analysis of the effect the specific hardware implemen-
tation of the subtract magnitude floating point operation of the Cray 2 and Cray

Y-MP has on the accuracy of results.

Floating Point Numbers

The following analysis borrows heavily from [13]. Given integers r and p, define
the set S(r,p) of floating point numbers to be zero and all numbers of the form

(A1) X =rem,

where e is any integer (positive, negative, or zero) and mis a positive or negative

fraction satisfying
rl<im|<1
whose absolute value can be expressed in the base r using at most p digits.

That is,
|m| =rPM

where M is an integer in the range rP~1< M < rP. In (A.1) the signed number m is
called the mantissa of X and eis the exponent of X. Note that the exponent is un-
bounded. In actual floating point arithmetic implementations the exponent is
bounded. Since the type of error associated with bounded exponents (overflow or
underflow) is unimportant here, the distinction is neglected in the following anal-
ysis.
The floating point numbers may be viewed as real numbers, on which the standard
arithmetic operations addition, subtraction, multiplication, and division may be
performed. The result of these operations may not be in S(r,p), however. Since the
result of floating point arithmetic must always be a floating point number, the
floating point arithmetic operations must be defined. For our purposes, the defi-
nition of the subtract magnitude floating point operation on the Cray 2 and Cray Y-
&
MP suffices. For these machines, r=2 and p=48. The subtract magnitude case arises

if numbers having opposite signs are added or numbers having the same sign are



subtracted.

The Cray 2 Subtract Magnitude Floating Point Operation

To find the floating point difference ab wherea >0 >band a> Ibl, puta=rmand
&
b=rfn. Assume that aand b are normalized, i.e., the leading digits of mand n are

not zero, unless aand b are zero. Then b=ren’', where n'=r(€-nis obtained by shift-
ing n to the right e-f places. We are assuming that there are enough digits in the
register to hold all of the right-shifted nonzero digits of n". Put n"equal to the high
order p digits of n'. (Bits shifted out of the p digit register are lost, as there is no
guard digit.[14]) If the p+1st digit of n'is a 1, n"'=n"+ 2P, otherwise n"'=n" (The
truncated bits of the preshifted mantissa are rounded up.) Then

u=m+n"<mcx<l.
If u'=0, set a+bequal to a normalized zero. If U'is not zero, postnormalization may
be required. Let k be the number of leading zeros in U'. Since reu'=re‘k(rku'),
g=e-kand u=rku' chopped.

Then ab=8u

e

Cray 2 Error Analysis

The error is defined to be the difference between the mantissa of the floating point
result when computed in an infinite number of digits and the mantissa of the result

when computed in the implemented floating point arithmetic.
The preshift requires that n shift right e-f places. If e-f> 2, |In"|< 2 so
u=m-|n"p rlr2>r2

which implies that the number of leading zeros K is either 0 or 1. Therefore, if k >
2, then e-fmust be 0 or 1. When e-f=0 (no preshift), no error is introduced. When
e-f=1, there are two possibilities: either a zero or a one in the p'th place was shifted
right one place. If a zero was shifted right, n"'=n", so no error occurs after postnor-
malization. If a one was right shifted, the answer obtained is one unit less than the

exact answer in the p-k'th place after postnormalization.
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Example 1

Assume r=2, p=5. Put

a =.10000x2%, b =-.11001x21

right shift b: n' 011001
n" .01100

roundup n"'= .01101

subtract mantissas: .10000
-.01101

sou' =.00011, k=3, u=.11000, but the exact mantissa, also 0%roduced by clean float-
ing point arithmetic, is .111000 The error is .11100 - .11000 = .00100 = 2-P+k,

If e-£>2, then |n™-n'|< r"P. The maximum error obtained after postnormalization is
less than plus or minus one unit in the last place.

Example 2

Assume r=2, p=3. Put
a=.100x24, b= -111x22

right shift b: n' = 00111
n" = .001
roundup n"'= .010

subtract mantissas: .1001

Thenu'=.010, k=1,u=.100, g = 4-1 =3.

The erroris.1001 -.100 =.0001 < 2P, and the result agrees with the result computed
with clean floating point arithmetic.

Example 3

Assume r=2, p=3. Put

a=.100x24 b= -.101x20
right shift b: n' 001091

" = .001
no round up n'""'=.001

subtract mantissas: .100
-.001

Sou'=.010, k=1,u=.100, %: 4-1 = 3, and the error is

1011 - .110 =-.0001 < -2-P. This result agrees with the result computed with clean

floating point arithmetic.

The Cray Y-MP Subtract Magnitude Floating Point Operation

To find the floating point difference ab wherea >0 >band a> |bl, puta=rmand
23]

b=rfn. Assume that aand bare normalized, i.e, the leading digits of mand nare not

zero, unless aand b are zero. Then b=ren', where n'=r(€-n is obtained by shifting

11



n to the right e-f places. Put n"equal to the high order p digits of n". (Bits shifted
out of the p digit register are lost, as there is no guard digit.[15]) Unlike the Cray

2 subtract magnitude case, no roundup occurs, so n"'=n". Then
u=m+n"<mcx<l.

If u'=0, set abequal to a normalized zero. If U'is not zero, postnormalization may

be required. Let k be the number of leading zeros in U’ Since réu'=re-Krku),
g=e-kand u=rku' chopped.

Then ab=©8u

Y-MP Error Analysis
The preshift requires that n shift right e-f places. If e-f>2, In™| <r'2, SO
u=m-n"p rlr2>r2

which implies that the number of leading zeros k is either 0 or 1. Therefore, if k>2,
then e-f must be 0 or 1. When e-f=0 (no preshift), no error is introduced. When e-
f=1, there are two possibilities: either a zero or a one was shifted right one place. If
a zero was shifted right, no error occurs after postnormalization. If a one was right
shifted, the answer obtained is one unit greater than the exact answer in the p-kth
place, after postnormalization. This implies that the subtract magnitude result
provided by the Cray Y-MP floating point can be as much as twice as large as the

actual answer when severe cancellation occurs.
Example 4

Assume r=2, p=5. Put

a =.10000x21, b = -.11111x20
right shift b: n' = 011117

n" = 01111
no round up n'"'=.01111

subtract mantissas: .10000
-.01111
~.0000T

So the computed difference is rP = 2 but the exact result, also produced by clean
arithmetic, is 2°¢. The Y-MP produces a result in this case that is twice as large as
the exact result.

Example 5

Assume r=2, p=5. Put

a =.10000x20, b = -.11001x2-1
right shift b: n' = 011001

12



n" = .01100
no round up n'""'=.01100

subtract mantissas: .10000
-.01100
~.00100

Sou'=.00100, k =2, u =.10000, but the exact result, also produced by clean arith-
metic, is .0111000 The error is .011100 - .10000 = .00010

If e-f> 2, then n"'-n'< rP. Then u'-u < ,—(p-2)’ that is, the error is less than one unit

in the third to last place larger than the exact value.

Example 6

Assume r=2, p=3. Put

a=.100x24, b= -.101x20
right shift b: n' 00101

n" = .001
no round up n"'=.001

subtract mantissas: .1000

.010

Sou'=.010, k=1,u=.100, g =4-1 =3, and the error is
1011 -.110 =-.0001 < -2p

Example 7

Assume r=2, p=3. Put

a=.100x24, b= -111x22
right shift b: n' = 00111

n" = .001
no round up n'"'=.001

subtract mantissas: .100

Sou'=.011, k=1,u=.110, g = 4-1 = 3, and the error is
1001 -.110 = -.011 < -2-p+2

The result produced by clean arithmetic for this example is in error by less than 2-P.

13



Appendix B

Relative Error and Perturbations to the Diagonal of the Matrix resulting from

the Discretization of Laplace's Equation on a Square Domain.

This section derives the effect on the error of the solution of the discretized
Laplacian on a square region due to adding a small positive constant € to the diag-
onal entries of the matrix. Consider the square domain R: 0 <X <M 0 <y < Tt in
which the numerical solution to the Dirichlet problem for the Laplace equation is
to be obtained by employing the finite difference equation

(B.1) F(SUP3(Uj+1j-2Uj j+Ui.1,),h® + F(SUP3(Yj+1-2Vj; j+Uj j-1),hd) = 0

With h = 1t/N, R is divided into N2 square nets with n=(N-1)2 interior points. Let

Ah denote the square matrix formed from the five-point formula on the left-hand
side of (B.1). Then the solution X of the system of finite difference equations (B.1)
is given by x = An~lb, where the right hand side vector b is derived by the applica-

tion of boundary conditions on the boundary of the discretized problem domain.
Let the neigenvectors of -Ah be denoted by Xp(ih,jh) with the corresponding pos-

itive eigenvalues Upg P, 0= 1,2,..,nl1

From the defining relation

(82) “AnXpg = UhaXpg

we have
(B.3) Xpq= sin(pih)sin(gih) p,g=1,2,..n1
(B.4) upg = F(1,h?)(2cos(ph) + 2cos(qh) -4) p, 0=1,2, .., N-1

The matrix -Ah has diagonal elements equal to 4. If the diagonal elements are per-

turbed by the addition of a small positive constant €, € << h, the resulting matrix -

Ahe has eigenvectors (B.3), and eigenvalues

(B.4)upge = F(1,h?)(2cos(ph) + 2cos(gh) - 4 - )p, 0=1, 2, ..., N-1

Additionally, -Ahg is symmetric positive definite (as is -Ap). The neigenvalues upq

and Upge may be labeled sequentially from 1 to n:

14



A1=U11, .., An = UN-IN-1

The eigenvectors (B.3) can be normalized to unit 2-norm length and ordered in
such a'way that the nxn matrix of eigenvectors U is unitary, and diagonalizes Apg,

and the eigenvalues are ordered from largest to smallest:

(B.5) UTARU = A, uTu =1

(B.6) diagne) = M1 - AeNlT, Ae1>Ag2 > .o = AN
Then

(B.7) x = UA-1UTh, Xe = UN:IUTD

Take norms to be 2-norms. Define the relative error Ae of the solution of the per-
turbed system by

Ae= F(|IX-Xell.IIXI])

then

Ae F(UATUTb-UAIUTD)) XD

FUIUA-L-AHUTDL 11D

FUA-L-A 1By 1x1)

IN

The 2-norm of the positive diagonal matrix L = AN LA Aisthe largest element of L.
Put Cpg= 2cos(ph) + 2cos(gh). The largest element of L is then

ILIl = A(max.pg) 10pg™ - vpee™
= A(max.pg) F(e.(Cpq - 4)(Cpq- 4 - €))

which occurs when p=g=1. Then

|IL|| = F(e,(4cos(h) - 4)(4cos(h) - 4-€)) O d(eh,4) O d(en?,4)

So

15



e = F(IIX-Xell,[IXIl) < F(en2|[bl|,41|x|])

If

F(lIbILIIXI)) = O(1)

then

Ae< en?

The relative error from the addition of a small positive amount € to the di-
agonal entries of the matrix obtained from the discretized Laplacian can cause an
error that increases as the square of the number of unknowns in the system. This
may be contrasted to the expected amount of error from classical roundoff error
analysis in eq. (1), from which it can be concluded that the relative error can be as

much as the unit roundoff (u) times the matrix condition number. The condition

number of the matrix of the discretized Laplacian is O(h"2)=0(n) (see for instance
[16]). This implies that the relative error in the solution of the system predicted by
classical roundoff error analysis could be as much as proportional to n: e < un.

Thus the amount of error incurred by adding the amount € to the diagonal entries

of the matrix rapidly dominates the total error.
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